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Abstract

Speech-driven 3D face animation aims to generate real-
istic facial expressions that match the speech content and
emotion. However, existing methods often neglect emo-
tional facial expressions or fail to disentangle them from
speech content. To address this issue, this paper proposes
an end-to-end neural network to disentangle different emo-
tions in speech so as to generate rich 3D facial expressions.
Specifically, we introduce the emotion disentangling en-
coder (EDE) to disentangle the emotion and content in the
speech by cross-reconstructed speech signals with different
emotion labels. Then an emotion-guided feature fusion de-
coder is employed to generate a 3D talking face with en-
hanced emotion. The decoder is driven by the disentangled
identity, emotional, and content embeddings so as to gen-
erate controllable personal and emotional styles. Finally,
considering the scarcity of the 3D emotional talking face
data, we resort to the supervision of facial blendshapes,
which enables the reconstruction of plausible 3D faces from
2D emotional data, and contribute a large-scale 3D emo-
tional talking face dataset (3D-ETF) to train the network.
Our experiments and user studies demonstrate that our ap-
proach outperforms state-of-the-art methods and exhibits
more diverse facial movements. We recommend watch-
ing the supplementary video: https://ziqiaopeng.
github.io/emotalk

1. Introduction
Dynamic and realistic speech-driven facial animation

has garnered growing interest in virtual reality [52, 11, 12],
computer gaming [38, 10, 2], and film production [28, 53,
7]. For current commercial products, 3D face blendshape
is handcrafted by animators, whereas manual scripts drive
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Figure 1. Results of EmoTalk. Given audio input expressing dif-
ferent emotions, EmoTalk produces realistic 3D facial animation
sequences with corresponding emotional expressions as outputs.

facial expressions. Such a process demands substantial ex-
penses and considerable time and labor. As deep learning
techniques are utilized in various scenarios [39], deep end-
to-end speech-driven facial animation [21, 8, 41, 9, 6] has
been widely studied in industry and academia. Presently,
learning-based 3D facial animations can not only produce
high-quality animation effects but also facilitate cost reduc-
tion during production.

However, current methods mainly focus on improv-
ing the synchronization between lip movements and
speech [44], neglecting the emotional variation of facial ex-
pressions. We argue that emotions are an essential aspect
of human communication and expression, and emotion ab-
sence in 3D facial animations may cause the uncanny valley
effect. It is a crucial issue to recover emotional expressions
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for the speech-driven 3D face animation problem. In fact,
emotional information is naturally contained in the speech,
and extracting emotions is a crucial task for speech under-
standing [50]. Nevertheless, as audio content and emotion
are entangled, it is hard to extract explicit content and emo-
tion from a speech simultaneously. In order to generate rich
emotional facial expressions, previous 2D facial animation
methods encode the emotions manually and only learn the
content feature from the speech [36, 4, 45]. By manipulat-
ing the emotion code, the facial decoder could achieve ap-
propriate emotional modulation. Manually controlling may
generate changeable emotions, but it could result in contra-
diction with the emotion in speech. For example, it does not
conform to human intuition by inputting angry speech but
outputting a happy expression.

To address this issue, we propose a novel speech-driven
emotion-enhanced 3D facial animation method (Fig. 1) in
this paper, where an emotion disentangling encoder and
emotion-guided feature fusion decoder are proposed to con-
sist of our key contribution, as illustrated in Fig. 2. For
the emotion disentangling encoder, two distinct audio fea-
ture extractors [1] are introduced and utilized to extract two
separate latent spaces for the content and emotion, respec-
tively, which is exploited to decouple emotion and content.
A cross-reconstruction loss is further presented to constrain
the learning process to better disentangle the emotion and
content from the speech. While for the emotion-guided fea-
ture fusion decoder, multiple different types of features are
decoded by a Transformer [49] module with periodic po-
sitional encoding and emotion-guided multi-head attention,
which will output 52 emotion-enhanced blendshape coeffi-
cients to represent the final human facial expressions. Ex-
tensive experiments show that our method significantly out-
performs current state-of-the-art methods in terms of emo-
tional expression by disentangling content and emotion.

To train the proposed network, emotional speeches with
corresponding 3D facial expressions are required. However,
as far as we know, there is no publicly available 3D emo-
tional talking face dataset that we can use, posing a serious
new challenge. To tackle the issue, a large-scale pseudo-3D
emotional talking face dataset, termed the 3D-ETF dataset,
is further introduced in our work. To build this dataset and
make it more applicable, we first collaborated with sev-
eral professional animators to create 52 FLAME head tem-
plates [27] that are semantic meaningful. Then, “pseudo”
3D blendshape labels are generated from images of large-
scale audio-visual datasets [30, 58] by utilizing a well-
established 3D facial blendshape capture system. Finally,
the 3D-ETF dataset with both blendshape coefficients [26]
and mesh vertices are constructed through blend linear skin-
ning. Since its blendshape labels are semantic meaningful,
the 3D-ETF dataset is versatile, allowing the facile transfer
of facial movements among different virtual characters [37].

In summary, the main contributions of our work are as
follows:

• We propose an end-to-end neural network for speech-
driven emotion-enhanced 3D facial animation, which
achieves various emotional expressions and outper-
forms existing state-of-the-art methods.

• We introduce the emotion disentangling encoder,
which disentangles the emotion and content in the
speech and makes the facial animation aware of clear
emotional information.

• We present a large-scale 3D emotional talking face
(3D-ETF) dataset including both blendshape coeffi-
cients and mesh vertices. We have implemented
parameterized transformations for blendshape coeffi-
cients and the FLAME model, allowing for efficient
conversion between various facial animations.

2. Related Work
2.1. Speech-driven 3D facial animation

Previously, numerous studies have been conducted on
2D talking head generation [5, 55, 32, 13, 56, 46, 20, 15],
which uses image-driven or speech-driven approaches to
create realistic videos of speaking individuals. However,
these methods are not applicable to 3D character models
that are widely used in 3D games and virtual reality interac-
tions. Therefore, speech-driven 3D facial animation has at-
tracted more attention recently [3, 21, 8, 47, 18, 41, 29, 9, 6].

One of the challenges in this field is the lack of
high-quality datasets for various emotions. For example,
VOCA [8] uses time convolutions and control parameters
to generate realistic character animation from any speech
signal and a static character mesh. Still, it only produces
decent mouth movements due to the limited upper face
movement in the VOCASET dataset [8]. Similarly, Face-
Former [9] uses a Transformer-based model to obtain con-
textually relevant audio information and generates continu-
ous facial movements in an autoregressive manner. It im-
proves multi-source generalization and achieves more pre-
cise changes in mouth movements than VOCA but still does
not enhance facial expressions because it also uses the VO-
CASET dataset.

MeshTalk [41] focuses on the upper part of the face,
which is lacking in VOCA, and creates a categorical latent
space for facial animation, disentangles audio-correlated
and audio-uncorrelated movements through cross-modality
loss, thereby synthesizing audio-uncorrelated movements
such as blinking and eyebrow movements. Although
MeshTalk has achieved upper face movement, the current
methods still need to solve the problem of lack of emotion
in 3D facial animation due to the absence of emotional fa-
cial animation datasets.
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Figure 2. Overview of EmoTalk. Given a speech input A1:T , emotional level l, and personal style p as inputs, our model disentangles
the emotion and content in the speech using two latent spaces. The features extracted from these latent spaces are combined and fed into
the emotion-guided feature fusion decoder, which outputs emotion-enhanced blendshape coefficients. These coefficients can be used to
animate a FLAME model or rendered as an image sequence.

2.2. Speech emotion recognition and disentangle-
ment

Speech emotion recognition (SER) is an essential but
challenging task for generating realistic talking head anima-
tions. Various techniques have been proposed in the paper
to extract emotions from speech signals, such as traditional
speech analysis and classification methods [35, 42, 23, 17,
43, 16, 19]. In this paper, we focus on deep learning-based
SER techniques to learn features from speech signals. For
example, Mekruksavanich et al. [31] used one-dimensional
CNNs [25] to achieve 96.60% accuracy in classifying neg-
ative emotions from a Thai language dataset. Yenigalla et
al. [54] combined phoneme sequences and spectrograms as
inputs to a CNN model and obtained better SER perfor-
mance than using either input alone.

One of the key challenges in speech processing is to sep-
arate emotion from content, which enables the neural net-
work to learn more specific features. This process is called
emotion disentanglement. Several methods exist for achiev-
ing emotion disentanglement and reconstruction in speech
using different techniques, such as variational autoencoding
Wasserstein generative adversarial networks (VAW-GANs)
[59], cross-speaker emotion transfer [57], and Mel Fre-
quency Cepstral Coefficient (MFCC) [33] with Dynamic
Time Warping (DTW) [34]. In this paper, we build on the
work of Ji et al. [20], who decomposed speech signals into
two decoupled spaces and fed them into a facial synthesis
module. We propose an improved emotion disentangling
encoder for 3D facial animation generation, which will be
described in detail in Sec. 3.1.

3. Method
We propose a 3D facial animation model that can recon-

struct facial expressions with rich emotions from speech
signals, enabling users to control emotional level and per-
sonal style. Let A1:T = (a1, . . . ,aT ) be a sequence of
speech snippets, and each at ∈ RD has D samples to
align to the corresponding (visual) frame bt. Let B1:T =
(b1, . . . , bT ) , bt ∈ R52 be a T−length sequence of face
blendshape coefficients, and each frame is represented by
52 values. The whole pipeline of our approach is revealed
in Fig. 2. By analyzing emotional information from any
arbitrary speech signal A1:T , our method is capable of pro-
ducing differentiated face coefficients B̂1:T . Moreover, the
proposed model takes a user-controllable emotional level
l ∈ R2 as input, which allows users to modulate the strength
of the expressed emotions in the resulting facial animations.
Personal style p ∈ R24 inputs can also be manipulated
by users to have different speaking habits. These two pa-
rameters are the same one-hot encoding as [48]. Then, the
decoder predicts facial coefficients B̂1:T =

(
b̂1, . . . , b̂T

)
conditioned on speech representations A1:T , the emotional
level l, and the personal style p. Formally,

b̂t = EmoTalkθ(at, l,p), (1)

where θ indicates the model parameters. For the con-
venience of describing detailed network components, let
Aci,ej denote the sample data pertaining to the ith content
and jth emotion in the audio sample, whereas Bci,ej de-
note the sample data pertaining to the ith content and jth

emotion in the blendshape coefficients sample. Both rep-



Figure 3. Emotion Disentangling Encoder. Various inputs of
speech, conveying different contents and emotions, are processed
to generate cross-reconstructed blendshape coefficients represent-
ing distinct combinations of facial expressions.

resentations will be employed in the following sections to
introduce the details of our method.

3.1. Emotion disentangling encoder

The intricate relationship between speech and facial ex-
pressions makes it arduous to learn the mapping from
speech to emotional facial expressions directly. To address
this issue, we propose an improved emotion disentangling
encoder for 3D facial animation generation, inspired by Ji et
al. [20]. To the best of our knowledge, this is the first work
that applies emotion disentanglement to this task. Our mod-
ule simplifies and enhances the original disentanglement
module in several ways. First, we replace the MFCC [33]
feature extractor, which cannot capture rich speech infor-
mation and has a complex input process, with a pre-trained
audio feature extractor wav2vec 2.0 [1]. Second, we stream-
line the disentanglement process to enhance its conciseness
and comprehensibility. Third, we transform the module into
an end-to-end form that directly outputs 52 blendshape co-
efficients required for facial animation, allowing the model
to receive better constraints during training.
Reorganization and disentanglement. As illustrated in
Fig. 3, the emotion disentangling encoder is designed to dis-
entangle short-term content features from long-term emo-
tion features in speech.

Nevertheless, the module cannot guarantee the disentan-
glement between content and emotion. To achieve this ob-
jective, we utilize pseudo-training pairs that combine di-
verse emotions and contents as input and require the net-
work to reconstruct the corresponding ground truth samples
as output. This approach compels the network to acquire
disentangled content and emotion representations, which
can better capture both aspects of speech and enhance the
overall performance of the model.

To separate content and emotion features in speech, two
pre-trained audio models [1] are used as feature extrac-
tors Ec and Ee ∈ R1024, which are fine-tuned on content

and emotion, respectively. The pre-trained models’ tem-
poral convolutional network(TCN) layer [24] is fixed dur-
ing fine-tuning since it is trained on a considerable amount
of audio data. We input two audios Ac1,e2 and Ac2,e1,
where the subscript c denotes text content, and e denotes
audio emotion. Content features c1 and c2 are extracted
using Ec (Ac1,e2) and Ec (Ac2,e1), respectively. Emo-
tion features e1 and e2 are extracted using Ee (Ac2,e1)
and Ee (Ac1,e2), respectively. The content and emotion
features are concatenated and fed into a decoder module
that outputs face blendshape coefficients for reconstruction.
Pseudo-training pairs comprising different combinations of
content and emotion are used as input, and the network is
required to reconstruct the corresponding ground truth sam-
ples as output, namely B̂c1,e1 and B̂c2,e2, for constraints
with real samples Bc1,e1 and Bc2,e2. This approach en-
forces disentanglement between content and emotion fea-
tures by requiring that they can be combined to reproduce
both aspects of speech.

3.2. Emotion-guided feature fusion decoder

In this work, we propose an emotion-guided feature fu-
sion decoder that maps audio to 3D facial animation coef-
ficients using emotional information from audio. This ap-
proach aims to generate more expressive facial animations.
This module consists of four components: emotion features
F e ∈ R256 and content features F c ∈ R512 extracted from
two latent spaces, personal style features F p ∈ R32 that
control the individual characteristics of facial expressions,
and emotional level features F l ∈ R32 that regulate the
degree of emotional expression. These four features are
concatenated along the same dimension and subsequently
inputted into the emotion-guided feature fusion decoder.

To generate the 3D blendshape coefficients from the
fused feature, we employ a module similar to the Trans-
former [49] decoder. The input feature F is first encoded
with periodic positional encoding [9], which captures the
stable open and close times of lip movements during speech.
Then, a biased multi-head self-attention layer that inte-
grates positional encoding into multi-head attention layers
inspired by attention with linear biases (ALiBi) [40] pro-
duces f

′

t, which assigns higher weights to closer informa-
tion in the mask layer and focuses on the changes between
adjacent actions. Subsequently, an emotion-guided multi-
head attention that combines f

′

t and the output Ee (Aci,ej)
of the emotion latent space is proposed. This module en-
hances the emotional expressiveness of 3D animated faces,
as demonstrated by experiments conducted in this study
(Tab. 5). Finally, f

′′

t is fed into a feed-forward layer
that outputs f

′′′

t , which is then passed through an audio-
blendshape decoder implemented as a fully connected layer
that outputs 52 blendshape coefficients.



3.3. Loss function

To train our neural network, we employ a loss func-
tion that comprises four distinct components: cross-
reconstruction loss, self-reconstruction loss, velocity loss,
and classification loss. The overall function is given by:

L = λ1Lcross + λ2Lself + λ3Lvel + λ4Lcls, (2)

where λ1 = 1.0, λ2 = 1.0, λ3 = 0.5 and λ4 = 0.1 in all of our
experiments. We provide a detailed explanation of each of
these components below.
Cross-reconstruction loss. In order to disentangle emo-
tional content from speech signals, as described in Sec. 3.1,
we train our network to reconstruct various cross combina-
tions and generate new blendshape coefficients. Given in-
put audio Ac1,e2 and Ac2,e1, the encoder decomposes them
and then reconstructs new combinations, which are com-
pared with the ground truth blendshape coefficients Bc1,e1

and Bc2,e2. The formula is as follows:

Lcross = ∥D (Ec (Ac1,e2) ,Ee (Ac2,e1))−Bc1,e1∥2

+ ∥D (Ec (Ac2,e1) ,Ee (Ac1,e2))−Bc2,e2∥2 ,
(3)

where D is the emotion-guided feature fusion decoder for
reconstructing the cross combinations.
Self-reconstruction loss. While constraining the quality of
the reconstructed output using cross-reconstruction, we also
require the network to reconstruct its ground truth blend-
shape coefficients. The self-reconstruction loss can be ex-
pressed as:

Lself = ∥D (Ec (Ac1,e2) ,Ee (Ac1,e2))−Bc1,e2∥2 .
(4)

Velocity loss. To address the issue of jittery output frames
when using only reconstruction loss, we introduce a veloc-
ity loss to induce temporal stability, which considers the
smoothness of prediction and ground truth in the sequence
context. By incorporating this loss, our model is encour-
aged to produce smoother and more realistic facial expres-
sions. The velocity loss can be expressed as:

Lvel =
∥∥∥(b̂t − b̂t−1

)
− (bt − bt−1)

∥∥∥2 , (5)

Classification loss. Due to the inherent difficulty of ex-
plicitly discerning the separability of emotional latent space
during the disentangling process, we introduce a classifi-
cation loss to supervise the output of the emotion extractor
Ee and enhance its ability to discriminate between different
emotions. The classification loss is defined as:

Lcls = −
∑
i

M∑
c=1

(yic ∗ log pic) , (6)

where M represents the number of distinct emotion cat-
egories, yic is the observation function that determines
whether sample i carries the emotion label c, and pic de-
notes the predicted probability that sample i belongs to class
c.

3.4. Datasets construction

Due to the scarcity of 3D talking face data with emo-
tions, no such data is publicly available. To acquire such
data, professional equipment and actors who can utter the
same sentence with varied emotions are required, which
entails high expenses. However, numerous 2D emotional
audio-visual datasets exist. We employ facial blendshapes
as a supervisory signal, which facilitates the reconstruc-
tion of plausible 3D faces from 2D images. Then, We
extract blendshape coefficients from two datasets using a
sophisticated blendshape capture method1 which result ac-
curately capture human emotional expressions (Fig. 4). A
large 3D emotional talking face (3D-ETF) dataset consist-
ing of approximately 700,000 frames of blendshape coef-
ficients, spanning over 6.5 hours, is constructed using this
method. Through blend linear skinning, both blendshape
coefficients [26] and mesh vertices are built for the 3D-ETF
dataset, filling a gap in 3D facial animation datasets, es-
pecially regarding emotional expression data and providing
vivid and lifelike human facial expressions.

4. Experiments

4.1. Datasets

Two widely used 2D audio-visual datasets were uti-
lized to construct the 3D-ETF dataset: RAVDESS [30] and
HDTF [58].

The RAVDESS dataset [30], also known as the Ryerson
Audio-Visual Database of Emotional Speech and Song, is
a multi-modal emotion recognition dataset comprising 24
actors (12 male, 12 female) and 1440 video clips of short
speeches. The dataset was captured with high-quality au-
dio and video recordings, and the actors were instructed to
express specific emotions, including neutral, calm, happy,
sad, angry, fearful, disgusted, and surprised. A random se-
lection of 80% of the dataset was used for training, 10% for
validation, and 10% for testing.

The High-Definition Talking Face (HDTF) dataset [58]
is a collection of approximately 16 hours of 720P-1080P
videos sourced from YouTube over the past few years. The
dataset includes over 300 subjects and 10k different sen-
tences. Five hours of videos from the HDTF dataset were
selected for mouth shape generalization and then parti-
tioned into training, validation, and testing sets in the same
proportion as the RAVDESS dataset.

1Details can be found in the Supplementary Material.



Figure 4. Facial Blendshape Capture. Input video streams of
different expressions, and outputs the blendshape coefficients of
the corresponding expressions.

RAVDESS (emotion) HDTF (no emotion)

Method LVE(mm)↓EVE(mm)↓LVE(mm)↓EVE(mm)↓
VOCA [8] 5.091 4.188 4.447 3.286
MeshTalk [41] 3.459 3.386 3.886 3.124
FaceFormer [9] 3.247 3.757 3.374 3.142
Ours 2.762 2.493 2.892 2.364

Table 1. Quantitative evaluation results on RAVDESS and
HDTF datasets. The lip vertex error (LVE) and emotional ver-
tex error (EVE) of our method are lower than those of the current
state-of-the-art methods.

4.2. Quantitative evaluation

To measure lip synchronization, we calculated the lip
vertex error (LVE) as used in MeshTalk [41] and Face-
Former [9]. This evaluation metric computes the average
ℓ2 error of the lips in the test set. For a single frame, LVE
is defined as the maximum ℓ2 error among all lip vertices.
Since LVE alone cannot reflect the full emotional expres-
sion, we proposed an emotional vertex error (EVE). To
compute EVE, vertex indexes in the eye and forehead re-
gions on the FLAME template are first selected. Similar to
LVE, the EVE measures the maximum ℓ2 error of the ver-
tex coordinate displacement in the interested region, and the
average LVE over the test set is reported as the evaluation
metric.

We retrained VOCA, MeshTalk, FaceFormer, and our
method (EmoTalk) on the RAVDESS and HDTF datasets.
The blendshape coefficients were converted into mesh ver-
tices (5023*3) corresponding to the FLAME model, which
was used as ground truth. Tab. 1 shows LVE and EVE eval-
uation results. EmoTalk achieved lower lip error and emo-
tion expression error than the three previous methods.The
proposed model has more accurate lip movements and bet-
ter emotional expression.
Generalization analysis. The model could not be trained

Method LVE(mm)↓ Train on VOCASET

VOCA [8] 4.704 ✓

MeshTalk [41] 4.513 ✓

FaceFormer [9] 4.418 ✓

Ours 4.134 ✗

Table 2. Quantitative evaluation results on VOCA-Test. Our
method exhibits strong generalization capability in zero-shot cases
and outperforms the current state-of-the-art methods.

Method RAVDESS HDTF MEAD VOCASET

VOCA 2.700 2.427 2.236 2.292
MeshTalk 2.139 1.868 2.058 2.070
FaceFormer 1.958 1.391 1.852 1.944
Ours 1.648 0.626 1.498 1.914

(zero-shot)

Table 3. Quantitative evaluation results of lip average ℓ2 error.

on VOCASET because access to the corresponding blend-
shape coefficients was unavailable, and the blendshape cap-
ture method was incompatible with the marked facial im-
ages provided by the official dataset. Nevertheless, we
evaluated our model on this dataset by converting the out-
put blendshape coefficients to mesh vertices and comparing
them with ground truth.

As reported in Tab. 2, EmoTalk outperformed the other
methods on VOCA-Test, even in zero-shot settings. This
could be attributed to two reasons: (i) controlling facial an-
imation through blendshape coefficients has a higher gen-
eralization ability than predicting vertex offsets based on
mesh, and (ii) sufficient 2D datasets can also enable the
model to learn complex relations between speech and facial
expressions, thus achieving better results.
Robustness analysis. When using the lip maximum ℓ2
error metric, there may be a potential impact of outliers
present in the dataset. To mitigate the impact of outliers and
present a more comprehensive evaluation, we additionally
computed the lip average ℓ2 error for proposed method and
introduced the MEAD dataset [51]. In Tab. 3, we present the
results of the lip average ℓ2 errors obtained from our method
and previous methods. The analysis of these errors demon-
strates the superior performance of our proposed method
over multiple datasets, substantiating its effectiveness and
robustness in comparison to existing methods.

4.3. Qualitative evaluation

As audio and facial movements cannot be evaluated
solely based on indicators and require human perceptual
evaluation, we conducted a qualitative assessment of our
model from two perspectives.
Lip synchronization. We compared our model with VOCA
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Figure 5. Qualitative comparison of facial movement by different methods on RAVDESS (left) and VOCA-Test (right). On
RAVDESS, we generate facial animations of saying the word “dog” with different emotions. Our method can produce expressive fa-
cial movements that match the emotions. On VOCA-Test, we generate facial animations of saying the word “one” without emotion. Our
method can achieve similar performance to the ground truth, and the range of motion is noticeable.

and FaceFormer by feeding them identical audio inputs
and generating corresponding facial animations. The re-
sults showed that the proposed model exhibited more pro-
nounced lip movements and better alignment with human
speech patterns. Even in cases of rapid mouth movements,
such as pronouncing the word “shy”, where the lips should
gradually open and then close, the proposed model captured
this lip synchronization more effectively (Fig. 5). More-
over, the proposed model’s ability to close the mouth was
comparable to the results trained on high-precision scanned
facial datasets.
Emotional expression. Previous methods were not opti-
mized for emotional expression, resulting in limited facial
expressions for different speech patterns. However, our
method could clearly demonstrate variations among emo-
tions. For example, in anger emotion, the movements of
raising and lowering eyebrows could distinctly reflect the
emotional information conveyed by speech (Fig. 5). A sup-
plementary video provides more detailed comparisons.

4.4. User study

To evaluate the proposed model more thoroughly, We
designed a comprehensive user questionnaire like [41]
and performed a comparative analysis with MeshTalk [41]
and FaceFormer [9] using the FLAME template. Since

our model incorporates emotional components, we devised
three sub-tasks: full-face comparison, lip synchronization
comparison (by covering the area above the nose), and
emotion expression comparison (by covering the area be-
low the nose). We selected twenty sentences from the
RAVDESS and VOCASET test datasets as our test cases,
ultimately formulating 120 multiple-choice questions. The
questionnaire system randomly presented a pair of compari-
son videos to users, allowing them to choose which video is
more realistic. We counted how many users chose our result
versus the competitor’s result, and the ratio of user choice
was calculated for satisfaction evaluation.

Specifically, compared with MeshTalk and FaceFormer,
our model received the most positive feedback from par-
ticipants, surpassing MeshTalk and FaceFormer in full-face
voting by 65.9% and 64.6%, respectively. Notably, in terms
of emotional expression, our model displays a huge advan-
tage over alternative approaches. Overall, most participants
considered our method superior to MeshTalk and Face-
Former. Detailed user choice results are shown in Tab. 4.

4.5. Ablation experiment

We conducted an ablation study to examine the contri-
butions of different components of our model. The essen-
tial modules, loss functions, and datasets were individually



Method Competitors Ours
Ours vs. MeshTalk
full-face 34.1% 65.9%
lip sync 38.7% 61.3%
emotion expression 31.5% 68.5%

Ours vs. FaceFormer
full-face 35.4% 64.6%
lip sync 40.9% 59.1%
emotion expression 30.8% 69.2%

Table 4. User study results. We devised three sub-tasks, namely
full-face comparison, lip synchronization comparison, and emo-
tion expression comparison.

studied to examine their effects on the evaluation metrics.
In Tab. 5, it is shown that a significant increase in emotional
expression error ensued when removing the emotion dis-
entangling encoder, which demonstrated the critical role of
EDE in emotional learning and expression. Similarly, re-
moving the emotion-guided multi-head attention also wit-
nessed a certain increase in EVE, which indicated the ef-
fectiveness of the emotion guidance module in enhancing
emotional expression.

From the loss function aspect, removing velocity loss
leads to a slight drop in performance, but it caused notice-
able jitter in the output of facial animation. Removing clas-
sification loss clearly increased the EVE, suggesting that
the feature extractor could distinguish emotions less effec-
tively. Then we train our model without using the HDTF
dataset to investigate the LVE changes. It is observed that
the LVE increases by about 0.5mm, and the performance
of lip vertex prediction decayed dramatically. This indi-
cates that training with the HDTF dataset is able to learn
more about mapping relationships between lip movements
and speech. Finally, we replaced our emotion disentangling
encoder with the method proposed by Ji et al [20]. because
they used MFCC as the audio feature extractor, and their ap-
proach required staged training during the processing. As a
result, we observed an increase in errors during the evalu-
ations of LVE and EVE. This indicates the effectiveness of
the improvements we made on the Ji et al.’s method [20].

5. Limitations
Our method still has some limitations we plan to address

in future work. First, our method relies on a large-scale au-
dio pre-training model, which increases the inference time
and hinders real-time applications. Second, our network
outputs 52 blendshape coefficients, which do not include
head movements, e.g. head shakes and rotations. A possi-
ble solution is to combine blendshape coefficients with the
FLAME model [27] to control both facial expressions and
head movements. Third, our training data is derived from

LVE (mm) EVE (mm)

Ours 2.762 2.493

w/o Emotion Disentangling
Encoder 3.126 3.076

w/o Emotion-Guided
Multi-Head Attention 2.907 2.832

w/o Lvel Loss 2.813 2.775
w/o Lcls Loss 3.096 2.815

w/o HDTF Dataset 3.254 2.806
replace our Encoder
with Ji et al.’s [20] 3.583 2.973

Table 5. Ablation study for our components. We show the LVE
and EVE in different cases.

2D images. The pseudo-3D data is not as precise as 3D-
scanned data and thus cannot represent the skin’s micro fa-
cial expressions. As a result, our method can only reflect the
overall emotional state of the animated face. We intend to
collect more emotional data using professional instruments
in the future and share it with the research community.

6. Conclusion
This paper proposes a novel method for generating

speech-driven 3D face animation that effectively conveys
emotions. Our method consists of two key components:
an emotion disentangling encoder and an emotion-guided
feature fusion decoder. The former segregates the speech
into its emotional and content components, providing clear
emotional information for facial animation. The latter en-
hances the expressiveness of facial animation by empha-
sizing emotion-related features. To address the problem
of missing 3D emotional talking face data, we construct a
large-scale 3D emotional talking face (3D-ETF) dataset that
contains blendshape coefficients and mesh vertices. Addi-
tionally, we have implemented parameterized transforma-
tions for blendshape coefficients and the FLAME model,
allowing for efficient conversion between various facial ani-
mations. Experimental results demonstrate that our method
outperforms existing state-of-the-art methods and receives
better user experience feedback. Our work contributes to
virtual reality applications. It can enable more realistic and
immersive virtual experiences with emotional talking faces.
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nando de la Torre, and Yaser Sheikh. Meshtalk: 3d face an-
imation from speech using cross-modality disentanglement.
In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1153–1162. IEEE, 2021. 1, 2, 6, 7, 13

[42] Björn Schuller, Gerhard Rigoll, and Manfred Lang. Hidden
markov model-based speech emotion recognition. In 2003
IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings.(ICASSP’03)., vol-
ume 2, pages II–1. Ieee, 2003. 3

[43] Björn W Schuller. Speech emotion recognition: Two decades
in a nutshell, benchmarks, and ongoing trends. Communica-
tions of the ACM, 61(5):90–99, 2018. 3

[44] Changchong Sheng, Gangyao Kuang, Liang Bai, Chenping
Hou, Yulan Guo, Xin Xu, Matti Pietikäinen, and Li Liu.
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Appendix

In this supplementary material, we provide more details
about EmoTalk, which consists of five parts: 1) The im-
plementation details of EmoTalk, including the model ar-
chitecture and parameter details; 2) The transform module
from blendshape to FLAME head, including the transform
method and calculation formula; 3) The comparison method
with baselines, including the comparison objects and eval-
uation details; 4) The construction details of the 3D-ETF
dataset, including data collection, preprocessing, and post-
processing; 5) The implementation details of blendshape
capture method.

A. Implementation details

EmoTalk’s overall architecture is illustrated in Fig. 2 of
the main paper. In order to improve the reproducibility and
credibility of EmoTalk on the 3D emotional face animation
generation task, we will further explain how we design and
implement two key components: emotion disentangling en-
coder and emotion-guided feature fusion decoder.

A.1. Training details

The network receives preprocessed video and audio data
as input. The video stream is converted to 30 frames per
second, while the audio sampling rate is 16 kHz. A fa-
cial blendshape capture method generates facial parameters
consisting of 52 blendshape coefficients per frame for the
video data.

During the training process, the model is optimized end-
to-end using the Adam optimizer [22]. The learning rate
and batch size are set to 1e - 4 and 8, respectively. The
model is trained on a single NVIDIA V100, and the entire
network takes approximately 8 hours (80 epochs) to train.

A.2. Emotion disentangling encoder

To perform emotion disentanglement, we first convert
the input audio signal to a sampling rate of 16 KHz. Then
we encode it using temporal convolutional network (TCN)
to process sequential data with convolutional architecture.
Next, we use a linear interpolation layer to adjust the length
of the encoded representation according to the target au-
dio signal. For instance, if we want to reconstruct Ac1,e1

using Ac1,e2 and Ac2,e1 as inputs, then we need to in-
terpolate them to have the same length as Ac1,e1. Af-
ter that, we decode the interpolated representation using
24 transformer[49] blocks. Each transformer block has a
model dimension of 1024, an inner dimension of 4096,
and 16 attention heads. Finally, we obtain two feature
vectors of dimension 1024 each, representing content and
emotional information in the output audio signal from pre-
trained models. We use a cross-reconstruction constraint

method to optimize model parameters during the training
process, which we detail in Sec 3.1 of the main paper.

A.3. Emotion-guided feature fusion decoder

We first map the output of the features by the emo-
tion feature extractor and the content feature extractor
to 256-dimensional and 512-dimensional vectors, respec-
tively. Then we add two one-hot embeddings for emotion
level and personal style, each mapped to a 32-dimensional
vector. The emotion level is a binary variable indicating
high or low intensity, while the personal style is a multi-
variate variable representing 24 different speakers. We con-
catenate these four features to form an 832-dimensional fea-
ture vector. We also add a periodic position encoding[9]
of the same dimension to this vector. Moreover, we use a
fully connected layer to reduce the dimension of the output
of the features by the emotion encoder from 1024 to 832
for subsequent emotion guidance. For biased multi-head
self-attention and emotion-guided multi-head attention, we
use four heads and set the dimension to 832 for each trans-
former decoder block. The concatenated features serve as
the input sequence for the decoder, while emotional fea-
tures serve as the output sequence from the last encoder
layer, thus achieving emotion guidance. Finally, we feed the
forward layer’s output into the audio-blendshape decoder,
which is a fully connected layer that maps between 832 di-
mensions and 52 dimensions blendshape coefficients. Thus
we obtain emotion-enhanced blendshape coefficients.

B. Blendshape to FLAME transform module
The Blendshape[26] to FLAME[27] transform module

converts blendshapes, which is a way of deforming a mesh
by interpolating between different shapes, to a FLAME
head, which is a 3D head model that captures variations in
identity, expression, head pose and gaze. This transform
module enables our model to transfer facial expressions
across different virtual characters quickly. To achieve this
conversion, we collaborated with professional animators to
create 52 semantically meaningful FLAME head templates
(see Fig. 6). These templates allow us to obtain the facial
deformation parameters corresponding to blendshape and
mesh head. We use blend linear skinning to interpolate be-
tween these parameters. Because blendshape labels have
semantic meanings, they can quickly transfer facial motions
across different virtual characters.

Specifically, after obtaining the blendshape coefficients
output by EmoTalk, we perform linear weighting on the
corresponding parameters of 52 FLAME head templates to
obtain the vertex parameters of 5023*3 dimensions. The
formula is as follows:

Vflame =

52∑
i=1

βVi (7)



where V flame is the final output of FLAME head vertex
coordinates, V i is the vertex coordinate of the ith FLAME
head template, and β is the blendshape coefficient vector
output by EmoTalk.

C. Baseline methods
We conducted a comparative analysis of EmoTalk

with three state-of-the-art approaches, namely VOCA[8],
MeshTalk[41], and FaceFormer[9]. To facilitate a com-
prehensive evaluation, we employed two distinct datasets,
namely the RAVDESS and HDTF, both of which are pro-
cessed through our facial blendshape capturing technique to
obtain the ground truth. For each frame in the datasets, we
calculated the blendshape coefficients and mapped them to
the corresponding vertex parameters of the FLAME model
using the transform module. Furthermore, we retrained the
models of the three existing approaches using RAVDESS ,
HDTF and 3D-ETF datasets to improve their performance.

For VOCASET, we used the pre-trained models provided
by VOCA and FaceFormer and retrained the MeshTalk
model to evaluate the vertex error of these three methods
on the VOCA-Test. It is worth noting that due to the ab-
sence of blendshape coefficients in the official VOCASET
dataset and the images containing marked faces incompati-
ble with our blendshape capturing approach, we are unable
to train our model on this dataset. Instead, we directly eval-
uated the EmoTalk model, trained on the HDTF dataset, on
VOCA-Test.

During the evaluation, while the other three methods
computed the error directly between the output vertices and
the ground truth, we needed to use a transfer module to
convert the EmoTalk output from blendshape coefficients
to mesh vertices to ensure comparability with other meth-
ods in the same dimension and eliminate any differences
between output formats.

D. Dataset construction details
In this study, we constructed a large 3D emotional talk-

ing face (3D-ETF) dataset, where facial blendshape is used
as the supervisory signal to reconstruct reliable 3D faces
from 2D images. The facial blendshape capturing method
is fine-tuned by animators to create numerous 3D facial an-
imations from the RAVDESS[30] and HDTF[58] datasets.

Specifically, 1440 videos from the RAVDESS dataset
and 385 videos from the HDTF dataset are processed by
converting them into 30 frames per second and capturing
the facial blendshape for each frame. To enhance the quality
of the dataset and reduce frame-to-frame jitter, a Savitzky-
Golay filter with a window length of 5 and a polynomial
order of 2 is applied to the output blendshape coefficients,
which significantly improved the smoothness of facial ani-
mation. The RAVDESS dataset generated 159,702 frames

of blendshape coefficients, which amounts to approximately
1.5 hours of video content. Meanwhile, the HDTF dataset
generated 543,240 frames of blendshape coefficients, which
equates to approximately 5 hours of video content. All the
generated blendshape coefficients are converted into mesh
vertices using the transform module and included in the
dataset. A supplementary video will demonstrate the ef-
fectiveness of our dataset.

E. Blendshape capture method
Our sophisticated blendshape capture method predicts

corresponding blendshape coefficients from input video
streams using a neural network model, which is then manu-
ally fine-tuned by professional animators to achieve realistic
facial reconstruction results that accurately capture human
emotional expressions.

In this method, we use the “Live Link Face” applica-
tion to collect a dataset consisting of images paired with
corresponding blendshape data. The image preprocessing
involved facial cropping and other necessary transforma-
tions before feeding them into a ResNet [14] architecture.
The ResNet model was employed to produce 52 specific
blendshape values as the output, and these values were con-
strained using the L2 loss function, ensuring precise regres-
sion of facial blendshapes.
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Figure 6. Semantically Meaningful FLAME Head Templates. We create 52 FLAME head templates that correspond to the blendshape
coefficients, to achieve the transformation from the blendshape coefficients to the FLAME head model.


