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Abstract

Audio-driven talking-head synthesis is a popular re-
search topic for virtual human-related applications. How-
ever, the inflexibility and inefficiency of existing methods,
which necessitate expensive end-to-end training to transfer
emotions from guidance videos to talking-head predictions,
are significant limitations. In this work, we propose the
Emotional Adaptation for Audio-driven Talking-head (EAT)
method, which transforms emotion-agnostic talking-head
models into emotion-controllable ones in a cost-effective
and efficient manner through parameter-efficient adapta-
tions. Our approach utilizes a pretrained emotion-agnostic
talking-head transformer and introduces three lightweight
adaptations (the Deep Emotional Prompts, Emotional De-
formation Network, and Emotional Adaptation Module)
from different perspectives to enable precise and realistic
emotion controls. Our experiments demonstrate that our
approach achieves state-of-the-art performance on widely-
used benchmarks, including LRW and MEAD. Addition-
ally, our parameter-efficient adaptations exhibit remarkable
generalization ability, even in scenarios where emotional
training videos are scarce or nonexistent. Project website:
https://yuangan.github.io/eat/

1. Introduction

Recently, there has been increasing attention on syn-
thesizing realistic talking heads due to their wide-ranging
applications in industry, such as digital human anima-
tion [20, 22, 55], visual dubbing [43], and video content
creation [50]. Audio-driven talking-head generation aims
to produce realistic talking-head videos synchronized with
speech. However, unlike speech, humans convey intentions
through emotional expressions. Therefore, generating emo-
tional talking heads is important to improve the fidelity of
talking heads for real-world applications. To address this
open problem, various forms of knowledge (such as human
head models, emotions, audio, and vision) must be consid-
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Figure 1. Efficient emotional talking-head generation. (a)
Previous work trains or finetunes the whole network with aug-
mented emotional driving videos. (b) Our EAT transforms
emotion-agnostic talking-head models into emotion-controllable
ones through flexible guidance, including emotional prompts or
text-guided CLIP [45] supervision, by lightweight adaptations.

ered in constructing multi-knowledge representations [57].

Previous one-shot talking-head generation methods [67,
43, 55] focus on achieving audio-visual synchronization for
emotion-agnostic talking-heads, which is a special case of
realistic talking-heads. More recent works [23, 22, 34] pay
attention to generating emotion-aware talking-heads. GC-
AVT [34] and EAMM [22] are two methods that generate
emotional videos using driven emotional videos and pose-
guiding videos. GC-AVT [34] achieves explicit control over
the expression, speech content, and pose of talking heads
through granular pre-processing design. EAMM [22] syn-
thesizes one-shot emotional talking-heads by adding aug-
mented emotional source videos. Since the driven videos
can introduce semantic ambiguity to mouth shapes, GC-
AVT replaces the mouth part with the neighbor frame, while
EAMM ignores the mouth part of driven emotional videos
by using data augmentation. Additionally, these methods
require training or finetuning the entire network at high
costs for emotional talking-heads generation.
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Although emotion-aware methods have made progress
in the one-shot talking-head generation, they lack in-depth
thinking in two key aspects. (1) Architecture efficiency.
As a sub-task of talking-head generation, it is parameter-
inefficient to train or finetune the entire emotional talking-
head generation network. Furthermore, since large-scale
emotion-agnostic talking-head data is more readily avail-
able than emotional data, it is worthwhile to consider how
to efficiently reuse the knowledge learned from emotion-
agnostic data. (2) Guidance flexibility. Previous meth-
ods prefer to transfer the driving videos to the target talk-
ing heads rather than directly learning the emotional repre-
sentation. In practice, finding appropriate driven emotional
videos requires taking into account factors such as reso-
lution, occlusion, and even the length of the driven emo-
tional videos and audio. Furthermore, prior research has
neglected to consider lip shapes, which can result in un-
realistic emotional expressions. For instance, according to
FACS [18, 27], depressed lip corners are one of the key
components of the sad expression.

To address the above limitations, a desirable approach
should enable an efficient and flexible transfer of pretrained
talking-head models to emotional talking-head generation
tasks with lightweight emotional guidance, as illustrated in
Fig. 1. There are two key advantages. Firstly, with the
reused knowledge, we can readily and effortlessly apply
the talking-head model to emotional talking-head genera-
tion tasks. Secondly, obtaining lightweight guidance is sim-
pler and more adaptable in practical scenarios, such as text-
guided zero-shot expression editing.

To realize the aforementioned paradigm, we propose an
efficient Emotional Adaptation framework for audio-driven
Talking-head (EAT) generation, which involves two stages.
In the first stage, we enhance the unsupervised 3D latent
keypoints representation [56] to capture emotional expres-
sions. Then, we introduce the Audio-to-Expression Trans-
former (A2ET), which learns to map audio to enhanced 3D
latent keypoints using large-scale talking-head datasets. In
the second stage, we propose learnable guidance and adap-
tation modules for steering emotional expression genera-
tion. These include Deep Emotional Prompts for parameter-
efficient emotional adaptation, a lightweight Emotional De-
formation Network (EDN) for learning the emotional de-
formation of facial latent representation, and a plug-and-
play Emotional Adaptation Module (EAM) for enhancing
visual quality. Our approach enables rapid transfer of tra-
ditional talking-head models to emotional generation tasks
with high-quality results and supports zero-shot expression
editing with image-text models [45].

We conduct extensive experiments to assess the ef-
fectiveness of EAT on emotional talking-head generation.
Compared to baseline competitors, EAT achieves superior
performance without guiding emotional videos. Moreover,

based on the pretrained talking-head model, we can attain
state-of-the-art (SOTA) performance in 2 hours with only
25% training data. The results indicate that our method
is capable of generating more realistic talking-head videos.
And with only text descriptions of emotions, we can achieve
zero-shot talking-head editing.

In summary, the main contributions of our work are
listed below:

• Our study introduces a new two-stage paradigm, called
EAT, for addressing emotional talking-head tasks. Our
experiments demonstrate that this paradigm outper-
forms previous methods with respect to both emotion
manipulation and video quality in one-shot talking-
head generation tasks.

• Our proposed architecture includes deep emotional
prompts, an emotional deformation network, and an
emotional adaptation module. This design enables the
efficient transfer from generating talking heads with-
out emotional expression to generating talking heads
with emotional expression.

• To the best of our knowledge, our study is the first
to introduce flexible guidance for talking-head adap-
tation. By utilizing image-text models, we can achieve
zero-shot expression editing of talking-head videos,
surpassing the capabilities of previous methods.

2. Related Work
Previous works have achieved great performance in

audio-visual synchronization. However, there remain some
challenges such as efficient knowledge transfer based on a
large-scale pretrained talking-head model.
Audio-driven Talking Head Generation. Audio-driven
talking-head generation [10, 51, 63, 7, 67, 20, 55, 64] based
on deep learning has attracted lots of attention in recent
years. Chen et al. [7] design a two-stage structure that
leverages facial landmarks as an intermediate representation
MakeItTalk [67] generates one-shot talking heads based on
disentangled speech and speaker. PC-AVS [64] generates
arbitrary talking heads with pose control.

Following the groundbreaking work of transformers [52]
in NLP [15, 46], recent works have achieved remarkable
progress in video-related tasks, including action recogni-
tion [2, 19, 36], video segmentation [58, 59, 68, 41], cross-
model understanding [32, 8], etc. In the talking-head field,
AVCT [55] designs an audio-visual correlation transformer
for generating talking-head videos. In this work, we en-
hanced 3D latent keypoints and applied transformers to gen-
erate more realistic talking heads.
Emotion-aware Talking Head Generation. Emotional
talking-head generation has been studied recently for realis-
tic talking-head generation. Pumarola et al. [44] introduce
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Figure 2. Overview of EAT model. (a) In the first stage, the Audio-to-Expression Transformer (A2ET) transfers latent source image
representation, source audio and head pose sequences to 3D expression deformation. (b) In the second stage, the emotional guidance
is injected into A2ET, Emotional Deformation Network (EDN) and Emotional Adaptation Module (EAM) for emotional talking-head
generation, presented in dashed lines. (c) The RePos-Net takes the 3D source keypoints Ks and driven keypoints Ki to generate frames.

an unsupervised framework to generate facial videos with
a specific expression. EVP [23] proposes emotional video
portraits to produce more vivid results based on source
video. However, the one-shot emotional talking-head gen-
eration has emerged recently. Sinha [49] generates pose-
fixed emotional talking-heads with graph convolution. GC-
AVT [34] train an emotion and pose controllable model
with a granular pre-processing design. EAMM [22] syn-
thesizes one-shot emotional talking heads with augmented
emotional source videos. In our work, we achieve emo-
tion control with efficient adaptation based on a pretrained
talking-head model.

Efficient Finetuning. Efficient finetuing has been stud-
ied for knowledge transfer and many techniques have been
proposed including residual adapter [47], bias tuning [5]
and side tuning [61]. Recently, prompt [35] has attracted
more attention in vision task. Inspired by prompt tuning in
the language model, prompt tuning recently has been pro-
posed in various visual tasks [45, 24, 66, 25, 65, 17, 33]
for effectiveness and efficiency. CoOp [66] and VPT [25]
utilize learnable prompt vectors and achieve better per-
formance. Moreover, to increase generalizability, Co-
CoOp [65] designed a lightweight network to learn prompt
vectors for each image. In our work, we introduce deep

emotional prompts, an emotional deformation network and
emotional adaptation modules to achieve efficient and ef-
fective emotion-related knowledge transfer.

3. Method

To avoid the expensive end-to-end training and finetun-
ing of previous methods [22, 34], we propose a two-stage
paradigm, the efficient Emotional Adaptation for audio-
driven Talking-head (EAT) generation method. Firstly, we
introduce the enhanced 3D latent representations and the
emotion-agnostic talking-head pretraining using the Audio-
to-Expression Transformer (A2ET). (Sec. 3.1) Secondly,
we present a parameter-efficient emotional adaptation ap-
proach to quickly adapt the pretrained talking-head model
for emotional talking-head tasks. This approach includes
deep emotional prompts, an Emotional Deformation Net-
work (EDN), and an Emotional Adaptation Module (EAM).
(Sec. 3.2) At last, we introduce our training objectives in de-
tail. (Sec. 3.3)

3.1. Emotion-agnostic Pretraining

Compared to inefficient end-to-end training for emo-
tional talking-head [34, 22], we explore leveraging the
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Figure 3. The architecture of RePos-Net and EAM. RePos-Net
extracts 3D appearance features fs from the source image. Given
the 3D source keypoints and driving keypoints, RePos-Net pre-
dicts the 3D flow warp matrix w to transform the 3D feature fs
and generates the output frame. EAM transfers emotional guid-
ance to emotion-conditioned features with the learned γ and β.

knowledge gained from an adaptable model that has been
pre-trained on emotion-agnostic datasets. The model allows
for rapid adaptations to downstream tasks, including emo-
tional talking-head generation. To achieve such an emotion-
agnostic pertaining model, we firstly enhance the 3D latent
representation [56] to capture the subtle expression better.
Then an Audio-to-Expression Transformer (A2ET) is intro-
duced to capture the temporal context of audio clips, gen-
erate audio-visual synchronized 3D latent expression se-
quences for talking-head generation, and support efficient
emotional adaptations (Sec. 3.3).

3.1.1 Enhanced Latent Representation.

Given a talking-head frame i, the 3D latent keypoints Ki,
which are learned unsupervisedly, are composed of four
components: identity-specific canonical keypoints Kc, ro-
tation matrix Ri, translation Ti, and expression deformation
Ei. These components are then combined with the follow-
ing equation:

Ki = RiKc + Ti + Ei. (1)

Based on 3D latent keypoints, RePosition Network
(RePos-Net) [56] can transfer facial expressions from one
person to another, as illustrated in Fig. 3. However, we ob-
serve that this kind of transfer fails to account for other fa-
cial expression elements, such as eyebrows, lip corners, etc.
Therefore, we enhance the latent representation for more
realistic talking-head generation with these modifications:

• We remove the deformation prior loss in OSFV [56]
which penalizes the magnitude of the keypoints de-
formation. This allows our latent keypoints to capture
more subtle changes in facial expressions.

• We use the MEAD dataset [54] to acquire labeled and
paired face data from neutral and emotional videos of
the same identity. This helps the network learn more
expressive faces from expression changes.

• To avoid the influence of expression-irrelevant back-
ground, we only compute losses on the facial part.
And we augment our paired data with the affectnet [40]
dataset to improve generalizability.

These modifications enhance the representation ability
of the learned 3D latent keypoints, which are the objective
of our A2ET model.

3.1.2 Audio-to-Expression Transformer.

Since the 3D latent keypoints are specific to the source iden-
tity and more complex than 2D latent keypoints [48, 55, 22],
predicting the 3D keypoints sequence directly is a challeng-
ing task. We notice that the facial expressions are mainly
represented by the expression deformation Ei in 3D latent
keypoints. Thus, the purpose of A2ET is to learn the audio-
visual synchronized expression deformation, which is com-
posed of audio-visual feature extraction and expression de-
formation prediction.
Audio-visual Feature Extraction. Previous work [55] gen-
erates emotion-agnostic talking heads with transformer and
phonemes. However, training transformer requires a large
dataset, and phoneme extraction is challenging in noisy or
accented speech. To address these limitations, we train our
A2ET model on a large dataset Voxceleb2 [11] and extract
speech features S1:n and acoustic features A1:n as inputs.
The audio semantic features S1:n are extracted via a speech
recognition model [1] from the MFCC features. To derive
acoustic features A1:n, we design an audio encoder to en-
code the mel spectrogram extracted with 80 mel bins and
1025 frequency bins.

As shown in Fig. 2(a), given frame i, we extract its se-
mantic context features from 2w + 1 audio frames. Ini-
tially, speech features Si−w:i+w and head pose features
Pi−w:i+w are converted into speech tokens. The 6DoF of
frame i is encoded into a pose token p. The A2ET encoder
takes these tokens as input. Subsequently, to capture subtle
mouth movements, we encode acoustic features Ai−w:i+w

and the latent source image representation with an audio
encoder [31] and keypoint detector Dk. These representa-
tions are fused to obtain acoustic tokens that are used by the
A2ET decoder to output the feature of 2w + 1 tokens.
Expression Deformation Prediction. The expression de-
formation Ei, composed of k 3D offsets, can be predicted
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from the feature of central frame i, but optimizing the 3D
expression motions leads to convergence issues. We ob-
served that the 3D keypoints learned by self-supervision ex-
hibit inherent inter-dependencies, with only a few keypoints
influencing facial expressions. To address this, the princi-
pal component analysis (PCA) of Ei is adopted to reduce
the dimensionality and eliminate nonessential information.
Then we can predict the 3D expression deformation from
the audio features.

3.2. Efficient Emotional Adaptation

Traditional audio-driven talking-head methods [7, 67,
20, 55, 64] have made impressive advancements in emotion-
agnostic talking-head generation tasks. However, to achieve
realistic talking heads, emotional expression is crucial.
Hence, we present a novel approach that includes three
parameter-efficient modules for swift emotional adapta-
tion from emotion-agnostic models. These modules com-
prise Deep Emotional Prompts, the Emotional Deforma-
tion Network (EDN), and the Emotional Adaptation Mod-
ule (EAM), specifically designed to enable efficient emo-
tional adaptation of pre-trained A2ET. Our approach allows
for lightweight adaptations, which offer flexibility in guid-
ing downstream tasks, such as zero-shot expression editing.
Emotional Guidance. One straightforward idea is to gener-
ate emotional talking heads using learnable guidance con-
ditioned on emotions. We posit that each emotional type
belongs to a distinct sub-domain in latent space. As shown
in Fig. 2 (b), a mapping network M is adopted to extract
emotion-conditional guidance with a latent code z ∈ U16.
the latent code is sampled from a Gaussian distribution,
which is commonly used in generative models [29, 9]. This
emotional guidance is applied to steer the generation of
emotional expressions.

Deep Emotional Prompt. To achieve parameter-efficient
emotional adaptation, we include the guidance as an addi-
tional input token of the A2ET transformer layer, as shown
in Fig. 2(a). We separately introduce shallow and deep
emotional prompts into the A2ET transformer architecture,
with the shallow prompt added to the first layer and the
deep prompt added to every layer thereafter. Our results
in Table 4 demonstrate that the deep prompt leads to bet-
ter emotional expression transfer compared to the shallow
prompt. However, we also observe that incorporating emo-
tional prompts can have a detrimental effect on audio-visual
synchronization. Generating emotional expressions using
fixed transformer weights while ensuring audio-visual syn-
chronization may pose a challenge for the prompts.
Emotional Deformation Network. We observe that the de-
coupled 3D implicit representations in Eq. 1 exhibit linear
additivity. Furthermore, emotional talking heads show emo-
tional deformation that is not present in traditional talking-
heads. To complement Ei, one intuitive approach is to in-
clude an emotional expression deformation term:

E′
i = Ei +∆Ei, (2)

where E′
i represents emotional expression deformation, Ei

represents speech-related expression deformation predicted
by A2ET, and ∆Ei represents emotion-related expression
deformation. To predict ∆Ei, we design a sub-network
called the Emotional Deformation Network (EDN), which
is depicted in Fig. 2(b). EDN utilizes the A2ET encoder ar-
chitecture to predict ∆Ei with emotional guidance and the
source latent representation token. To accelerate adaptation,
we initialized EDN with the pretrained A2ET encoder. To
update Ei with E′

i, we can get emotional 3D latent key-
points using Eq. 1.
Emotional Adaptation Module. To enhance the visual



LRW [12] MEAD [54]
PSNR/SSIM↑ FID↓ SyncNet↑ M/F-LMD↓ PSNR/SSIM↑ FID↓ SyncNet↑ M/F-LMD↓ Accemo↑

ATVG [7] 18.40/0.64 51.56 2.73 2.69/3.31 17.64/0.56 99.42 1.80 2.77/3.74 17.36
Wav2Lip [43] 22.80/0.73 7.44 7.59 1.58/2.47 19.12/0.57 67.49 8.97 3.11/3.71 17.87
MakeItTalk [67] 21.67/0.69 3.37 3.28 2.16/2.99 18.79/0.55 51.88 5.28 3.61/4.00 15.23
AVCT [55] 21.72/0.68 2.01 4.63 2.55/3.23 18.43/0.54 39.18 6.02 3.82/4.33 15.64
PC-AVS [64] 23.32/0.72 4.64 7.36 1.54/2.11 20.60/0.61 53.04 8.60 2.66/2.70 11.88
EAMM [22] 22.34/0.71 6.44 4.67 1.81/2.37 20.55/0.66 22.38 6.62 2.19/2.55 49.85

Pretrain (Ours) 23.97/0.76 1.89 6.30 1.95/2.12 20.32/0.61 26.71 8.09 2.83/2.99 25.18
EAT (Ours) 24.11/0.77 3.52 6.22 1.79/2.08 21.75/0.68 19.69 8.28 2.25/2.47 75.43

Ground Truth ∞ /1.00 0 7.06 0.00/0.00 ∞ /1.00 0 7.76 0.00/0.00 84.37

Table 1. Quantitative comparisons with state-of-the-art methods on LRW [12] and MEAD [54]. We present the results of pretrained
A2ET and full EAT model on both LRW and MEAD. M/F-LMD denotes the landmark distance of mouth and face. ”↑”: higher is better.
”↓”: lower is better. Red: the 1st score. Blue: the 2nd score.

Method Wav2Lip PC-AVS EAMM EAT GT

Lip-sync 3.86 3.90 3.64 3.99 4.59
Quality 2.69 3.19 2.89 3.35 4.59
Accemo 13% 20% 35% 50% 66%

Table 2. User Study on CREMA-D and LRW. Lip-sync and
Quality represent the audio-visual synchronization and visual
quality. Emotion classification accuracy (Accemo) evaluates the
effectiveness of methods in producing emotional expressions.

quality, we have designed a lightweight, plug-and-play
adaptation module called the Emotional Adaptation Mod-
ule (EAM) that can generate emotion-conditioned features.
As shown in Fig. 3, the module takes in the guidance em-
bedding e and processes it through two fully connected (FC)
layers to obtain a set of channel weights γ and bias β. And
we use the tanh activation function to confine the γ and β
values to the range [-1, 1]:

γ, β = tanh(FC(ReLU(FC(e)))). (3)

Once we have obtained γ and β, we can input the feature
x to obtain the emotional feature, which is calculated using
the following equation:

EAM(x) = Fs(1 + γ, x) + β, (4)

where Fs denotes the channel-wise multiplication. As
shown in Figure 2, the EAM can be inserted into RePos-
Net, as well as the audio and image feature extractors.
Zero-shot Expression Editing. Owing to the quick adap-
tation capabilities of our EAT, we can achieve zero-shot
text-guided expression editing of talking heads by distilling
knowledge from CLIP [45], a large-scale vision-language
pertaining model. This unique ability sets our work apart
from the latest research [22], as it eliminates the need for
emotional training data and enables generalization to appli-
cations that require rare expressions.

Specifically, our goal is to employ CLIP loss to learn
emotional guidance correlated with text-described expres-
sions. To achieve this, we extract the head poses, source
audio and the first frame from the target video as the input.
Besides, a target expression description is taken for finetun-
ing. Utilizing the refined EAT model and our training loss,
we add an additional CLIP loss [42] to finetune the mapping
network and EAM module only. In detail, we extract image
embeddings from the predicted talking face using the image
encoder of CLIP, and text embeddings from the description
using its text encoder. We then iteratively optimize the dis-
tance between the image and text embeddings to align the
generated talking face with the input text.

3.3. Training Objectives

For supervised learning, the loss is calculated as follows:

L = λlatLlat + λsyncLsync + λrecLrec, (5)

where λlat, λsync and λrec are hyper-parameters that re-
weight the corresponding term. As for zero-shot editing,
we replace the λrecLrec with the CLIP loss since there is
no ground-truth video. In the following, we will discuss
each training loss in detail.
Latent Loss. Latent loss is applied to optimize the pre-
dicted latent keypoints:

Llat =
1

N

N∑
i=1

(
∥∥PEi − P̂Ei

∥∥2
2
+

∥∥Ki − K̂i

∥∥2
2
), (6)

where N denotes the frame length of a sampled audio clip
in each batch. PEi represents the predicted PCA of expres-
sion deformation in i frame. Ki is the transferred 3D latent
keypoints according to Eq. 1. P̂Ei and K̂i are the corre-
sponding ground-truth of the frame i. As the emotional ex-
pression deformation ∆Ei is not included in Pi, we only
use the loss of 3D keypoints in Eq. 6 while training EDN.



Sync Loss. The synchronization loss is introduced in
Wav2Lip [43]. Based on the structure of SyncNet [13], we
train an expert to discriminate the audio-visual synchroniza-
tion in neutral and emotional datasets. For a sampled audio
clip in each batch, we computed the synchronization loss of
the generated video using the following equation:

Lsync = − log(
v · s

max(∥v∥2 · ∥s∥2, ϵ)
). (7)

The input speech embedding s and the generated video em-
bedding v are extracted by the speech encoder and image
encoder in SyncNet, respectively.
Reconstruction Loss. To improve the expression genera-
tion, we employ L1 reconstruction loss only in the facial
region. Additionally, to generate sharper frames, we apply
perceptual loss [26] to the entire frames using a pretrained
VGG19 model.
CLIP Loss. The CLIP loss calculates the similarity be-
tween the embeddings of the generated face and the text
description with a pretrained CLIP model. Specifically, the
CLIP loss is calculated by taking the cosine similarity be-
tween the normalized embedding of the image and text.

4. Experiments
4.1. Experimental Setup

Implementation details. The videos are sampled to 25 FPS
and the audio sample rate is 16KHz. The videos are cropped
and resized to 256×256. To synchronize the audio features
and the video, We extract the mel-spectrogram [37] by con-
figuring the window length and hop length to 640. The
number of keypoints k used in EAT is 15. The mapping
network of emotional prompts consists of shared four MLP
layers and unshared four MLP layers for every kind of emo-
tion. We enhance the 3D latent keypoints for 48 hours and
pretrain the A2ET with enhanced latent keypoints for 48
hours. Then we finetune the EAT architecture for 6 hours.
Our work is based on 4 NVIDIA 3090 GPUs.
Datasets. The training dataset consists of videos from Vox-
Celeb2 [11] and MEAD [54]. MEAD is a high-quality emo-
tional talking-head video set with 8 kinds of emotions. To
ensure fair comparisons, we split the MEAD dataset into
training and testing sets based on identity, using the same
test identities as EAMM [22]. To learn large head pose
changes, we select about 8,000 emotional videos from the
VoxCeleb2 [11] dataset with Emotion-FAN [39] for finetun-
ing. To obtain the PCA of the enhanced 3D keypoints, we
extract the largest 32 eigenvalue matrix and mean of 2,500
videos from the training set.
Baselines. We compare with SOTA one-shot talking-head
generation methods on LRW [12] and MEAD [54] test
set. They are ATVG [7], Wav2Lip [43], MakeItTalk [67],
AVCT [55], PC-AVS [64] and EAMM [22].
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MEAD training data in a one-hour fine-tuning session, or even
with only 25% data in a two-hour session.
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Figure 6. The percentage of parameters in EAT.

Metric. We assess the quality of synthesized emotional
videos with the following metrics:

Image quality. We utilize PSNR, SSIM and Frechet In-
ception Distance score (FID) [21] to measure the image
quality of synthesized videos.

Audio-visual synchronization. We evaluate the audio-
visual synchronization of the synthesized videos using the
confidence score of SyncNet [13]. In addition, the distance
between the landmarks of the mouth (M-LMD) [7] is used
to indicate speech content consistency, while the distance
between the landmarks of the whole face (F-LMD) repre-
sents the accuracy of the pose and expressions.

Emotional accuracy. To assess the emotional accu-
racy (Accemo) of the generated emotions, we fine-tune the
Emotion-Fan [39] using the training set of MEAD.

4.2. Talking-head Generation

To verify the effectiveness of EAT, we do experiments on
emotion-agnostic and emotional talking-head generation.
Emotion-agnostic Talking-head Generaiton. For one-
shot emotion-agnostic talking-head generation, we test on
the LRW test set, which comprises 25k neutral videos. We
take the first frame as the source image for every test video.
As presented in Table 1, our method outperforms other



“She is talking with pouting.”Source Image

Source Image “He is talking with eyes closed.”

Figure 7. CLIP-based zero-shot editing. The expressions are pro-
vided by “text description”. The neutral videos and source images
are in-the-wild from LRW [12].

“She is talking while crying hard.”

“He is talking with a fierce expression.”

Source Image

Source Image

Figure 8. Additional zero-shot results of our EAT. Emotional ex-
pressions are given by ”text description”. The first row of each
text shows the editing results and the second row shows the gener-
ated talking head of a different identity with the learned guidance.
Please refer to our video for more details. Source images are from
MEAD[54] and LRW[12].

methods in terms of visual quality for emotion-agnostic
talking-head generation. Furthermore, our EAT can im-
prove the performance of the pretrained talking-head model.
Wav2Lip and PC-AVS risk overfitting the pretrained lip
synchronization scoring model since their sync scores sur-
pass the ground truth. Additionally, Wav2Lip only gener-
ates mouth parts without facial expression and head pose.
Emotional Talking-head Generation. We follow the set-
ting of EAMM to compare the emotional talking-head gen-
eration on the public-available MEAD test set. For all meth-

Method PSNR↑ M/F-LMD↓ Sync↑ Accemo↑

OSFV [56] 22.39 1.60/2.12 6.68 30
Enhanced 24.49 1.09/1.49 7.49 86

Table 3. Ablation study of enhanced latent representation. To
validate the effectiveness of our enhanced latent representation, we
generate emotional videos driven by source images and emotional
videos in the MEAD test set.

Prompt PSNR↑ M/F-LMD↓ Sync↑ Accemo↑

w/o 20.46 2.85/2.99 8.12 25
Shallow 21.19 2.50/2.63 7.63 57
Deep 21.23 2.36/2.48 7.83 84

Table 4. Ablation study of prompt. To verify the effectiveness
of shallow and deep emotional prompts, we produce videos using
source images and emotional videos from the MEAD test set.

ods, the neutral source frames are from EAMM.
Table 1 shows our EAT can achieve the best performance

in most metrics. Specifically, EAT achieves better video
quality and higher emotion accuracy than other approaches.
These findings support the superiority of the emotional rep-
resentation learned by our proposed method. Fig. 4 visu-
ally demonstrates our capability to produce authentic and
comprehensive emotional expressions in the one-shot set-
ting. Note that AVCT [55] is not capable of controlling pose
explicitly even with ground-truth 6DoF. For more results,
please refer to our supplementary.

4.3. User Study

To evaluate the generated emotional talking heads with
in-the-wild images, we conducted a user study with 14 par-
ticipants to assess lip-sync, video quality, and emotion clas-
sification. The maximum score value is 5. To ensure a di-
verse set of images, we randomly sampled 16 images from
both the CREMA-D and LRW datasets, which are not in-
cluded in the training data. Additionally, we used audio
from MEAD test set to generate a total of 32 videos (4 ×
8 emotions) for each method. As shown in Table 2, our
method achieved the best scores for lip-sync, video qual-
ity, and emotion accuracy, validating the effectiveness of
our EAT architecture in generating emotional talking heads.
Besides, the results show that the sync value in Table 1 is
inaccurate for emotional talking-head due to the SyncNet
model being trained only with neutral talking-head videos.
More in-the-wild results can be found in the supplementary.

4.4. Tuning Efficiency

During the finetuning of the second stage, we conducted
periodic tests on a subset of the MEAD test set every half
hour. This enabled us to demonstrate the time and data effi-
ciency of our EAT. EAT can efficiently adapt the pretrained



Ablation (A) (B) (C) EAT

Prompt ✓ ✓ ✓
EDN ✓ ✓
EAM ✓

PSNR↑ 20.46 21.23 21.40 21.79
M/F-LMD↓ 2.85/2.99 2.36/2.48 2.28/2.41 2.22/2.43
Sync↑ 8.12 7.83 7.83 8.22
Accemo↑ 25 84 81 67

Table 5. Ablation study of each component. Each component
contributes to the improvement of the video quality, thus verifying
its effectiveness.

Lper ✓ ✓ ✓ ✓
Llat ✓ ✓ ✓
Lsync ✓ ✓
L1 ✓

PSNR↑ 21.52 21.61 21.31 21.79
Sync↑ 5.50 5.66 8.13 8.22

Table 6. Ablation study of each loss. Each loss contributes to the
improvement of the video quality or synchronization value.

A2ET model to sub-tasks, even with limited data. As shown
in Fig. 5, EAT can surpass the SOTA results within one hour
with full or half data. We can also achieve comparable per-
formance with just a quarter of the data within two hours.
Moreover, as shown in Fig 6 the emotional adaptation mod-
ules require only 6.85% additional parameters compared to
the pretrained model. Deep emotional prompts account for
5.30%, EDN for 1.17%, and EAM for 0.38% of the addi-
tional parameters. These results demonstrate the effective-
ness and efficiency of our EAT approach.

4.5. Zero-shot Expression Editing

We conduct zero-shot expression editing with the CLIP
[45] model to generate a novel emotional talking head
video, as shown in Fig. 7. Given a neutral video, we treat
the first frame as the source image and edit the expression
by text descriptions. Based on EAT architecture, we learn
the emotional guidance and EAM with an additional CLIP
loss [45]. We notice that text descriptions will determine the
editing performance and need careful design. Besides, the
learned latent code from one video and guidance texts can
also be applied to another video. As shown in Fig. 8, We
present different identity results manipulated by a learned
latent code.

4.6. Ablation Study

To assess the effectiveness and importance of various as-
pects of EAT, We conduct several ablation studies on our
proposed architecture and modules.

Enhanced Latent Representation. We compare the la-
tent representation before and after our proposed enhance-
ment. As shown in Table 3, the superior performance
in face reenactment shows that our pre-trained model can
capture a wider range of emotional facial movements than
OSFV [56], which has been discussed in Sec. 3.1.1.
Prompt. To study the effect of different types of prompts,
we conduct experiments with shallow and deep emotional
prompts. Table 4 shows that deep prompt learns emo-
tional expression deformation better than shallow prompt,
although it has a side effect on synchronization.
Each Component. To verify the effectiveness of our pro-
posed modules, we conduct ablation experiments by remov-
ing one component every time. Table 5 shows that all three
components can improve video quality. Deep emotional
prompts can transfer the talking-head knowledge to emo-
tional talking-head generation at the expense of synchro-
nization. Although deep emotional prompts lead to intense
emotional expressions, the outputs deviate from the ground
truth. By incorporating EDM and EAM, the image quality
and fidelity toward the ground truth are enhanced, as evi-
denced by the rise in PSNR/SSIM values. Yet, this comes
at the expense of emotion intensity and accuracy. Please
refer to our supplementary for visual analysis.
Each Loss. As shown in Table 6, we conduct an ablation
study on perceptual loss, latent loss, sync loss, and L1 loss
in the finetuning stage. It demonstrates that sync loss con-
tributes to synchronization while others contribute to ex-
pression fidelity.

5. Conclusion
In this paper, we propose an efficient emotional adap-

tation paradigm for audio-driven talking-head generation,
consisting of two stages. First, we enhance 3D latent rep-
resentation and develop a transformer architecture A2ET
to achieve emotion-agnostic talking-head generation. Sec-
ond, we introduce learnable guidance for emotional expres-
sion control through our deep emotional prompts, EDN,
and EAM. With these adaptation modules, EAT can quickly
transfer the pretrained talking-head model to emotional
talking-head generation. Experiments demonstrate that our
EAT is the first parameter-efficient and effective paradigm
for emotional talking-head generation.
Limitations and Broader Impact. 1) The drawbacks of
emotional training data, such as the diversity of background
and head poses, will affect the generalizability of our EAT.
2) Our approach paves the way for broader talking-head
applications, including zero-shot or one-shot emotional
talking-head generation.
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Supplementary Material

Source Image Neutral Contempt Fear Happy

Source Image Neutral Angry Disgusted Sad

Figure 9. Additional emotional expressions generated by EAT.
EAT produces realistic and diverse facial expressions with corre-
sponding emotional guidance. Please zoom in for a better view.
Source images are from CREMA-D[6] and MakeItTalk[67].

A. The Networks Details
We provide additional details of our network architecture

and training procedure. It should be noted that the Keypoint
Detector (Dk) and RePos-Net networks are primarily de-
rived from OSFV [56]. For more information, interested
readers may refer to OSFV [56].
Audio-to-Expression Transformer. We use the Audio-to-
Expression Transformer (A2ET) to transfer the audio to 3D
latent expression deformation sequences. The A2ET con-
sists of an encoder and a decoder, both with 6 transformer
layers and 8 heads. The feed-forward layer has a dimension
of 1024. Each token is a 128-dim vector. The expression
deformation vector (Ei) is predicted by the feature of the
central frame i. However, directly optimizing the 3D ex-
pression motions leads to convergence problems in network
training. To address this issue and bridge the gap between
the 3D expression deformation and the audio features, we
use principal component analysis (PCA) to reduce the di-
mensionality of Ei from 45 to 32. Specifically, we calculate
the matrix of principal eigenvalues U and mean vector M
from the training set. Then the expression deformation vec-
tor is obtained by projecting the predicted PCA using the
following equation:

Ei = PEi ∗ UT +M, (8)

where PEi is the predicted PCA and Ei is the expression
deformation, which is used to modify the neutral 3D key-
points to generate the expressive face. As the number of
keypoints is 15, the shape of Ei is (15, 3).
Emotion Mapper. We propose an emotion mapper that
produces emotional tokens to guide the generation of emo-
tional expressions. As shown in Fig. 10(a), the emotion
mapper M consists of several shared and unshared multi-
layer perceptrons (MLP) layers. It takes a 16-dim latent

code z as input and outputs seven emotional tokens e0, e1,
· · · , e6. The first token e0 serves as the emotional guid-
ance for the emotional adaptation module (EAM), which
modifies the features of the audio-to-expression transformer
(A2ET). The remaining six tokens e1, · · · , e6 are fed to the
corresponding transformer layer of A2ET as deep emotional
prompts. The Emotional Deformation Network (EDN) then
uses all these tokens and the latent source representation to
generate the emotional deformation ∆E.
Emotional Deformation Network. The Emotional De-
formation Network (EDN) learns the emotional deforma-
tion ∆E using the same architecture as the A2ET encoder,
which has six transformer layers. Fig. 10(b) shows the input
and output of EDN. It takes the latent source representation
d and the emotional guidance tokens e0, e1, · · · , e6 as input,
and extracts their features fd, fe0 , · · · , fe6 . Then it applies
global average pooling to the emotion-related features fe0 ,
· · · , fe6 and uses an MLP layer to obtain the final emotional
deformation ∆E.
Emotional Adaptation Module. The emotional adapta-
tion module (EAM) consists of two multi-layer perceptrons
(MLPs). As shown in Fig. 10(c), given the input feature x
and the emotional token e0, we extract the weight vector
γ and the bias vector β using MLPs. They have the same
dimension as the input x. With the channel-wise multiplica-
tion operation Fs and channel-wise addition, we obtain the
output x′.
Parameter Efficiency Analysis. Our Deep Emotional
Prompts, EDN and EAM only require about 7% of the pa-
rameters compared to the whole network. The emotion
mapper, which generates deep emotional prompts for eight
emotions, has most of the parameters. In addition, EDN and
EAM consume less than 2%. These parameters are 13.9M.
This is half of the emotional network of EAMM [22], which
has 27.9M parameters.

B. Training and Testing Details

Training Details. We use the MEAD dataset and 8k emo-
tional video clips from Voxceleb2 [11] with various facial
expressions to learn the enhanced latent keypoints. We
also use roughly 21k emotional images from AffectNet [40]
to train emotional expression generation. Due to the lack
of corresponding neutral faces, we generate neutral faces
paired with emotional images by using Ganimation [44].
We train our EAT with Adam [28] with β1 = 0.5 and
β2 = 0.999. The learning rate is set to 1.5×10−4 for A2ET
and 2× 10−4 for other modules. In the first stage, we train
A2ET with only latent loss first to obtain a good initializa-
tion, and then we train it with full loss. To improve gener-
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Figure 10. More network architectures of our EAT model.

Happy Angry Disgusted Fear Sad Neutral Surprised Contempt Average

Wav2Lip [43] 0.00 25.64 0.00 0.00 0.00 91.25 0.00 0.00 17.87
MakeItTalk [67] 0.00 25.64 0.00 0.00 0.00 75.00 0.00 0.00 15.23
AVCT [55] 0.83 25.64 0.00 0.00 0.00 69.38 0.00 10.08 15.64
EAMM [22] 23.33 84.48 9.40 0.00 0.00 98.13 94.02 72.27 49.85

Pretrain (Ours) 35.00 11.97 0.00 0.00 49.17 38.75 0.00 59.66 25.18
EAT (Ours) 84.17 100.00 48.72 16.52 49.17 100.00 100.00 94.96 75.43

Table 7. Quantitative evaluation of the emotion classification in the MEAD dataset.

Weight PSNR↑ M/F-LMD↓ Sync↑ Accemo↑
w/o 21.49 2.27/2.46 8.02 76
EAT 21.79 2.22/2.43 8.22 67

Table 8. Ablation study of EDN weight initialization. The
weight initialization of EDN with the A2ET encoder promotes the
performance of EAT.

alization, we use the Voxceleb2 and MEAD datasets, which
contain about 225k video clips. In the second stage, we
finetune efficient adaptation modules with only the MEAD
dataset, which has about 10k video clips. We test our model
on LRW [12] and MEAD [54] dataset.

Testing Details and Protocol. When testing LRW, the in-
put is the first frame, and the transformation starts from
the first frame. Therefore, the relative offsets of the latent
keypoints are used. When testing MEAD, due to the varia-
tion in facial expressions, which is unrelated to the neutral
source image, the predicted latent keypoints are used.

To ensure accurate evaluations, we crop and align [7] the
faces before calculating these metrics: PSNR, SSIM, FID,
M-LMD, and F-LMD. As for synchronization confidence,
we preprocess the generated videos with reference to PC-
AVS [64].

C. Additional Experimental Results

Additional baseline results. As shown in Figure 11, we
compare our EAT results with several baseline methods.
Our results are more pleasant than those of MakeItTalk [67]
and Wav2Lip [43], which do not consider emotional ex-
pression in talking heads. Additionally, our EAT achieves
emotion control compared to the pretrained A2ET network.
Videos are included in the supplementary material for ref-
erence.

Various emotional expressions To validate the diversity
of emotional expressions generated by EAT, we present
six different emotional results in Fig. 9. Compared to
Neutral emotion, emotional expressions result in differ-
ent modifications to facial elements, such as lip corners,
eyes, and brows. We present the quantitative results of
emotion classification in Table 7. We notice that EAT
works significantly better on Happy, Sad, Disgusted, and
Contempt than other methods. This is because our method
can capture mouth details and these emotions can be more
clearly reflected by the lips. As for Neutral, Angry,
and Surprised, EAMM [22] performs well since these
emotions are more apparent on the eyes and brows. And
EAT can also achieve better performance in these emotions.
However, all methods perform poorly on Fear emotion. It
may be because Fear and Surprise are similar and diffi-
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Figure 11. More Qualitative results. We compare with more baselines, such as MakeItTalk [67], Wav2Lip [43], and our pretrained model.
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Figure 12. Emotion interpolation. The top row is the emotion interpolation results between Angry and Surprised. The bottom row is the
results between Contempt and Sad. The neutral faces are from MEAD [54]

cult to distinguish.
Emotion interpolation. We conduct emotional guidance
interpolation on the MEAD test set to verify that the la-
tent space learned by the emotion mapper is continuous, as
Fig. 12 shows.
Additional ablation study. We conduct further ablation
studies on the weight initialization of EDN, Our results, pre-
sented in Table 8, show that using the weight initialization
of the A2ET encoder leads to quicker convergence and im-
proved performance in terms of video quality and audio-
visual synchronization.
Visual analysis on each component of EAT. To analyze
the effect of each component of our model, we show the fear
emotion results from (A), (B), and (C), with corresponding
accuracy rates of 38.46%, 30.77%, and 15.38% respectively
in Fig. 13. Deep emotional prompts help generate intense

emotional expressions that deviate from the Ground Truth
(GT). By incorporating EDM and EAM, we achieve greater
fidelity toward the GT and higher image quality in terms of
PSNR/SSIM. This is attributed to the learning capabilities
of EDM and EAM for emotional data. However, it results
in reduced emotion intensity and accuracy.
Visualization on the profile faces. To assess the ability
of enhanced latent representation in 3D talking-head gen-
eration, as shown in Fig. 14, we visualize the talking-head
frames generated from the profile faces of MEAD. We test
the faces captured from left 30 degrees and right 60 degrees
with Suprised and Happy emotions.

D. Limitations and Future Work.
While EAT is capable of generating emotional talking-

head videos with emotional guidance, there are still some
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Figure 13. Visualization on each component of EAT.
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Figure 14. Visualization on the profile faces of MEAD.

Source Image Surprised

Mouth GT

Figure 15. Failure case. The driving audio and poses are from the
videos in the first row. The second and third rows display the gen-
erated results with Surprised emotional guidance. Neutral faces
are from MakeItTalk [67] and driving video is from LRW [12].

limitations. Firstly, the diversity of background and head
pose in emotional training data can affect the generalizabil-
ity of our EAT. As shown in Fig. 15, the wrinkles on the
forehead are not obvious in these in-the-wild images. This
issue could be addressed by more naturalistic and non-acted
emotional data [60, 30, 4] and representations with the head
prior, such as FLAME[62]. Secondly, effective guidance
texts are required to achieve zero-shot generation. This may
be due to the limited ability of models trained on image-text

pairs to capture emotional expression, which could affect
the performance of zero-shot learning. Thirdly, the eye re-
gion, such as eye blinks [53] and gaze direction [16], has
not been considered in our work. Finally, the discrete emo-
tion guidance limits the representation ability of our model.
It needs to note that facial expressions are not always rep-
resentative of the internal emotional state [3]. More refined
theories of emotion, such as the valence-arousal model, may
help generate more realistic emotions. We leave these prob-
lems for future work.

E. Ethical Considerations.
Our research is intended for use in virtual human re-

search and entertainment. However, there is a risk that
the emotional talking-head generation algorithm could be
abused. We strongly recommend that generated talking-
head videos be labeled as “fake”. On one hand, our
work demonstrates that emotional talking-head generation
is technically feasible. On the other hand, fake video detec-
tion [14, 38] has attracted significant attention. We would
be happy to assist in the development of related research.


